KU体育
产品说明: | |||||
由北京理化分析测试技术学会热分析专业委员会和江苏省分析测试协会热分析专业委员会主办,江苏省分析测试协会协办的三个主题的分会场,分会报告围绕热分析方法在对应主题研究领域的应用展开了讨论。诸位专家各显神通,精彩内容层出叠现,请随仪器信息网编辑走进会场,一同领略报告学者的卓越风采吧!
材料的常规使用的寿命和产品的保质稳定期,能够最终靠研究物质的热分解反应动力学,进而得到配合物反应进度与时间、温度间的关系来进行预测。摩尔热容的测量可用于研究物质的微观结构和机理,在合成工艺设计、热量计算和燃烧机理的研究中具备极其重大意义。课题组合成了两种稀土芳香羧酸配合物[Eu(3,4-DMBA) (3,4-DMHBA)(5,5’-DM-2,2’-bipy)]2与[Tb2(3,4-DMBA)6(5,5’-DM-2,2’-bipy)2(H2O)],并采用荧光光谱、TG-DTG/DSC及其与红外联用的方法,对合成的19种配合物进行了分析表征,表明:其共显示出四种不一样的晶体结构;配合物拥有非常良好的耐热性,在升温过程中,中性配体倾向于首先失去,配体分解为脂肪族有机物和CO2、H2O等气态小分子,最终产物生成金属氧化物;摩尔热容测量结果为配合物热力学性质稳定、没有相变或其它任何热非正常现象发生,比较了两种配合物1[Pr(III)]和7[Dy(III)]的摩尔热容,发现结构相同的两种配合物的热容值相近,故具有相近的分子间振动能。
固体推进剂体系常见的为端羟基聚丁二烯(HTPB),其具有力学性能好、粘度低、固含高、成本低等优点。粘合剂采用羟基(-OH)与异氰酸酯基(-NCO)发生反应生成氨基甲酸酯键,-NCO反应活性高,对水敏感,与水反应会生成脲键,并放出CO ,易产生气泡,氨基甲酸酯键的耐水性也有限,且新型高能氧化剂二硝酰胺铵(ADN)、硝仿肼(HNF)与异氰酸酯基相容性差。叠氮(-N3)和炔基(-C≡CH)的反应在很多领域应用很广,在推进剂领域具有不受水分影响,可提高固化产物弹性体中的氮含量,并有望在室温下固化的优势。首先将HTPB进行修饰得到PTPB,再合成两种叠氮固化剂,N3-III(三官能度)和=N3-II(二官能度),通过一价铜的催化来实现固化反应。之后以力学性能为判据确定了一款合成配方,并使用非等温DSC法研究了该体系的固化动力学机理。由基辛格(Kissinger)方程结合阿仑尼乌斯(Arrenius)方程,求得表观活化能Ea和指前因子A;由DSC曲线峰形指数得到n,即可预测任意温度条件下的等温固化曲线。最后得到结论PTE-0.1体系在30℃条件下,30h内即可达到98%的固化度。
热分析测试结果是否能反馈待测样品性质的真实信息?这是一个常被人忽略的问题。受到源自仪器、环境、样品、检测原理等因素的影响,常常出现测试数据不能反映真正实验结果的现象。如何获得准确、真实的测试结果?这需要在状态合格的仪器设施上,排除与样品及非样品相关因素的干扰。热重实验中样品质量W与仪器升温速率间不具有函数关系,升温程序的改变不会使热重曲线发生变动,这是由热重分析仪中热天平和升温炉体单独测量物理量的特性所决定。测试环境中的外力震动、气路波动、天平失稳等因素,以及测试样品发生晶粒跳溅、飞离坩埚、剧烈分解、试样熔融、露出坩埚、试样膨胀等行为对样品台压力产生的变化,均会导致测试结果的失真,实验者应当从热分析曲线中识别这种现象,并重新来测试。DSC测试中随升降温速率的设置不同会对实验结果产生不同程度的影响,这其中有几率存在电源干扰、静电释放以及其它高频干扰源的影响;试样在坩埚内的气泡产生、出离坩埚等情况也是影响因素之一,因此样品制备过程显得十分重要。这些都是实验中应该辨别和避免的现象。
检测机构实验室质量控制,涵盖人机料法环五大要素,设备状态在整个环节中起到十分关键的作用。对设备应怎样做好质量控制工作?仪器设施通过验收后,处于整个控制流程的起步阶段,仪器经过检定或自检,就能够直接进行日常的检测活动。一次检定显然不能终身能用,因此会通过仪器的期间核查,来不断考察仪器的工作状态。核查的方式有:实验室内部人员比对、不同仪器比对、标物核查以及留样再测,但最好的方式还是进行实验室间比对,例如组织数家实验室做实验数据的考核,以及参加能力验证。仪器设施验收主要是对关键测试指进行考核,如对热膨胀仪进行验收,通过采用标样对相对伸长量,平均线胀系数等关键指标的偏差,与文献值还有实验数据来进行比对,以确保仪器的可用性。仪器设施优先进行检定,条件不足的须要溯源到标准物质,再次之则要求检验测试机构保留与原检测结果相关性或准确性的凭证,即参加验证。在仪器检定、自检程序完成之后,需要对仪器设施的性能指标、检定完毕的仪器状态,同国标、ASTM、IOS等标准对仪器设施的要求是否匹配进行确认,也是必须做的工作内容。所有确认工作完成之后,方可对外进行一般性的检测服务。
天然橡胶是从三叶橡胶树中收集到白色胶体,再加入固化剂经过烘干所制成;合成橡胶是人工合成的橡胶,具有线性高分子、支链高分子、体型高分子几类分子结构。它们的分子量均较大,天然橡胶分子量可达到百万级,合成橡胶也在十几万量级以上。天然橡胶在其分子链段方向具有弹性,在链段垂直方向不具有弹性,因此不可直接用;通过在其中混入硫磺,经过高温度高压力加工工艺可形成C-S-C键的网络结构,即可制备出像轮胎、橡胶圈、奶嘴、密封胶条等橡胶制品。天然橡胶制成硫化胶以后,想要再制成再生胶,需要将橡胶链段进行解段,形成一些小的自由基体,其中最难解段的是C-C链段,也是制备再生胶最为困难的部分。当前我国对资源再利用十分关切,并不断加大这一领域的利用度。我国废旧轮胎产量居世界首位,并以每年8%~10%的速度飞速增加,至2020年可达2000万吨,这为再生胶的生产提供了充足的原料。再生胶可用于汽车部件、飞机跑道、枕木、塑胶田径运动跑道等产品的制造。氟醚橡胶因其耐热、耐油、耐氧化、耐化学品等优异性能,被大范围的应用汽车、电子、航天、船舶等领域高精度、耐高温、高耐磨、条件苛刻的工业环境中。醚键支链的存在进一步破坏了碳主链结构的规整度,降低了其结晶能力、增大了分子链链段活动能力,同时随着柔性支链取代基的增大,使分子堆更加松散,其链段活动能力进一步增强。
传统的Calvet型微量热仪的代表型号有TA仪器的TAM和塞塔拉姆(SETARAM)的C-80;大体积量热计目前在二次电池领域有一定需求,代表型号有热安(THT)的IAC与耐驰(NETZSCH)的IBC 284;SETARAM的LVC-1380-3W可应用于核废料的量热中;应用于化工中试的大体积量热计有SETARAM的DRC和梅特勒(METLLER)的RC1;此外大体积量热计还可应用于相变储能材料、大型样品的热容量,大型工件的热含量,冷聚变,以及人体新陈代谢热量的测定。报告中还介绍了课题组开发的Seebeck型大体积量热计的原理、结构、样机参数以及应用。大体积、高功率热量计可用于动力电池、相变建筑材料等任意大体积样品的热容量测量,有机反应热量测量,冷聚变能量测量等。大体积Seebeck型量热计仍存在热噪声、温度噪声、热分布误差(HDE)、测量时间长等问题,但已开发出了对应的降噪方法,与Calvet法相比在设计原理、降噪方法、参考池、浴槽温度、卷积核等方面具有一定特色。
(C21H9O4N)2H2O]nMOF单晶进行了研究:从MOF单晶生长过程的热谱图进行热动力学方法分析,计算出活化能与指前因子;通过MOF单晶的TG曲线及XRD衍射图谱,得出其具有三维孔洞网络结构;吸附试验根据结果得出MOF对N2、CO2、CH4气体的吸附程度不同,具有选择性差异,且室温下表现的更明显,并利用理想溶液吸附理论(IAST-Ideal Adsorbed Solution Theory)预测了多组分气体的吸附行为,较高的选择吸附比归因于MOF结构中出去配位水分子所生成的金属位点,其与CO2具有强作用力;MOF对气体的吸附热力学分析利用virial II方程对等温吸附曲线的计算结果,表明MOF与CO2分子间也存在较强作用力。
固体推进剂作为战略、战术等固体发动机的动力源,一直以来都是航天航空技术的核心内容之一,我国主要是采用肼催化分解技术来进行研究。复合固体推进剂由氧化剂(高氯酸铵)、粘合剂、金属燃料等组成,其中氧化剂约占推进剂总质量的60~85%。为客服高氯酸铵(AP,NH ClO4)能量低、特征信号强、对环境造成污染等问题,固体推进剂的研究和开发方向正朝着高能、低特征信号、洁净、钝感而发展。而新型氧化剂二硝酰胺铵ADN被视作最有希望替代已普遍的使用的AP氧化剂。国内外在ADN的研究进度有一定差距,我国的ADN仍未达到应用水准,还存在许多瓶颈问题。通过固体ADN球形化改性可改善其加工性能、降低表面缺陷。常见的几种稳定剂由于能量偏低,会降低推进剂的能量,因此通过氨基保护、硝化、脱保护三步骤合成二硝基苯二胺稳定剂,加入后使ADN的分解温度显著提高。
同步热分析仪和热膨胀仪在钢铁材料的研究中应用广泛,可测定钢铁的多项物理性能指标。钢的固、液相线温度是连铸生产中确定浇注温度以及研究钢液凝固过程的重要的工艺参数。浇注温度过高会导致铸坯坯壳薄并进而引起开浇溢钢或冻结。因此,须根据各钢种的凝固特点,执行相应的浇注温度控制制度。准确获得钢的固、液相线温度可提供一种最佳的低过热度的浇注操作,来保证得到细晶粒组织以及高质量连铸坯。测定钢的固、液相线温度方法较少,仅有的YS/T533-2006方法标准已不适用于其测定,传统的计算模型或公式也已不能够满足Ni系低温钢、中高锰钢和电工钢等特殊新钢种的实际生产指导需要,开发快速准确测定钢固液相线温度测量方法迫在眉睫。氧化脱碳是钢铁材料在热加工过程中的普遍的问题,其控制对弹簧钢、钢帘线、冷镦钢等线棒材的生产十分重要。目前气氛加热炉模拟法操作复杂、效率低、成本高,也迫切地需要开发一种快捷的模拟方法。通过对现有同步热分析仪设备的气路改造,以不同的实验气氛条件模拟不同工艺,并全程采集热分析曲线及测量铁皮厚度和脱碳层深度,成功开发出一种新的钢材氧化脱碳模拟方法,拓宽了同步热分析仪的应用范围。
聚乳酸PLA具有左旋与右旋两种构象,聚乳酸外消旋共混物由二者混合所得。立构复合晶相比均质晶具有更高的熔点和更优异的力学性能,这吸引慢慢的变多的学者对其进行研究。使用常规DSC手段分析平衡熔点在立构复合晶与均质晶熔点差异来源中的作用,表明平衡熔点的差异仅为导致二者熔点差异的部分原因。并使用Flash DSC结合显微红外技术,研究不一样的温度条件下PLA外消旋共混物中氢键的形成对SC/HC竞争生长行为的影响,PLA外消旋共混物中形成的氢键可能是立构复合晶的成因。
溶胶或溶液中的胶体粒子或高分子在一定条件下互相连接,形成空间网状结构,结构空隙中充满了作为分散介质的液体,这样一种特殊的分散体系称作凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,即分散介质为气体的凝胶材料成为气凝胶,这是由胶体粒子或高聚物分子相互聚集构成的一种具有网络结构的纳米多孔性固体材料,其固体相和孔隙结构均为纳米量级。SiO 气凝胶具有极低的热导率、超轻质、高热稳定性等特性,使其在工业、民用、建筑、航天及军事等领域有很广泛的应用。对气凝胶隔热板的热重分析结果可用于判定产品质量;与质谱联用实验观测到明显的水分子离子峰,表明气凝胶中硅羟基缩合生成水;与红外光谱仪联用实验谱图中峰,表明有机物气体的逸出。该检测技术已被航天系统采用,并作为气凝胶隔热材料产品的质量控制方法。 相关资讯:《戊戌深秋意难忘 己亥季夏再相会——2018年热分析技术及应用研讨会圆满落幕》 相关资讯:《热分析群雄聚首论道——仪器厂商助力热分析研究领域高水平质量的发展》 |